GRACEFUL – A Learned Cost Estimator For UDFs

Johannes Wehrstein *, Tiemo Bang †, Roman Heinrich *‡, Carsten Binnig *‡

* Technical University of Darmstadt, † Microsoft – Gray Systems Lab, ‡ DFKI

Imagine you are a data-scientist...

... and want to retrieve all customers with a churn risk larger than 80%.

Setup:

- the data is in a database
- your churn metric is written in Python

```
def churn(user) -> bool:
    # Base probability
    churn_probability = 0.2

# Adjust probability based on inputs
    if tenure_months < 6:
        churn_probability += 0.2
    if monthly_spend < 30:
        churn_probability += 0.1
    if support_calls > 3:
        churn_probability += 0.15
    if tenure_months > 24:
        churn_probability -= 0.1

    churn_probability = min(max(churn_probability,
        0), 1) # Clamp to [0, 1]

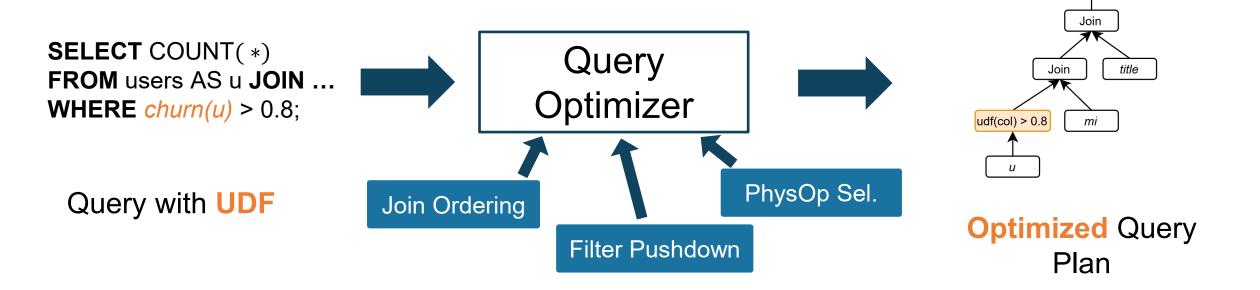
    return random.random() < churn_probability</pre>
```

Solution: Use UDFs to Execute Python code in the DBMS

SELECT * FROM users as u WHERE churn(u)>0.8;

UDF during QO

Expectation:



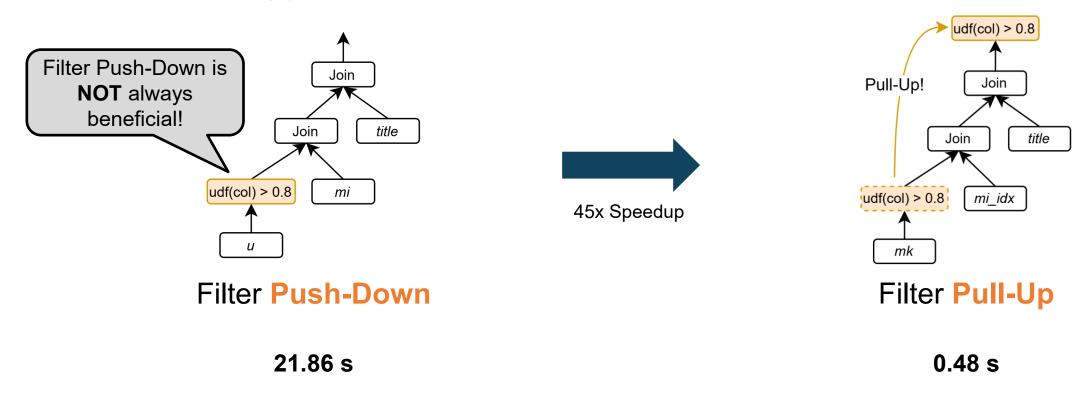
Unfortunately, this is not the reality!

Many things go wrong during QO for UDFs

Example: Filter Push-Down

Query with **UDF**:

SELECT COUNT(*) **FROM** users AS u **JOIN** ... **WHERE** *churn(u)* > 0.8;

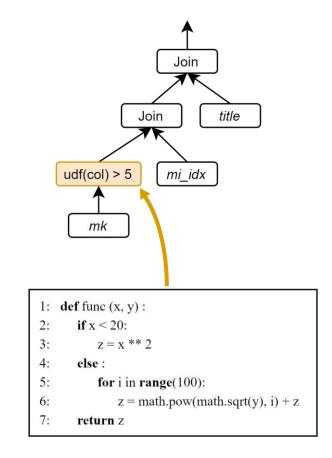


How to decide when to apply pull-up?

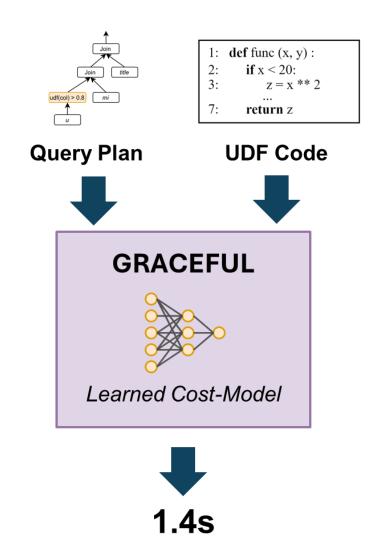
A Cost Estimator for UDFs is needed

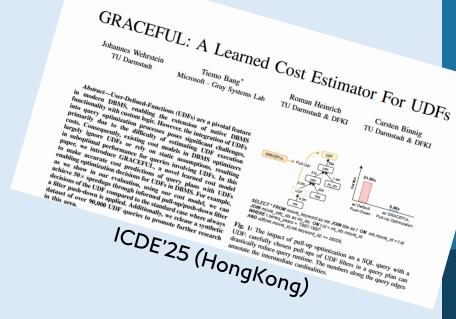
Cost Estimation for UDFs is a hard problem

- Undecidable problem in general: c.f. halting problem
- 2. Every UDF is different: complexity / length / operators
- 3. **Different runtimes** for tuples: if/else conditions
- 4. No information on Cardinalities inside and above UDF: output of the UDF and branching is unknown



Cost Estimation for UDFs is challenging





GRACEFUL

A Learned Cost-Estimator For UDFs

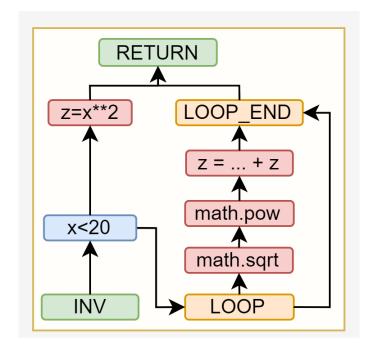
Key Ideas

- 1. Representation as a **Graph**
- 2. Transferable Features
- 3. Selectivity Estimation inside UDF
- 4. Representing **UDF & Query Plan** together

#1 Transferable Representation of UDF as Graph

Split UDF into fine-granular operations (Instead of representing as a black-box)

- → representation as a graph
 - Enables better understanding of the inner workings of the UDF
 - Allows Generalization to unseen code



Naïve representation as CFG is not enough:

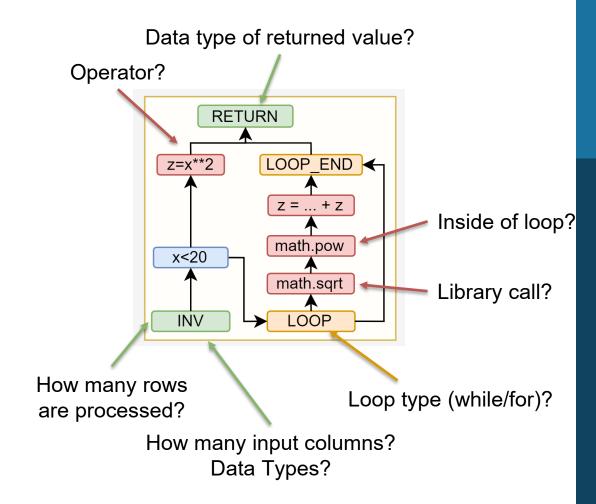
- Collapsing of nodes (compact representation)
- 2. Additional edges (~residual connections)e.g. LOOP→ END_LOOP

#2 Transferable Featurization

Featurize abstract signature of UDF (in contrast to featurizing code – var names could change, ...)

Features:

- Information related to computational complexity
- 2. On how many rows executed



Allows generalization to unseen UDFs

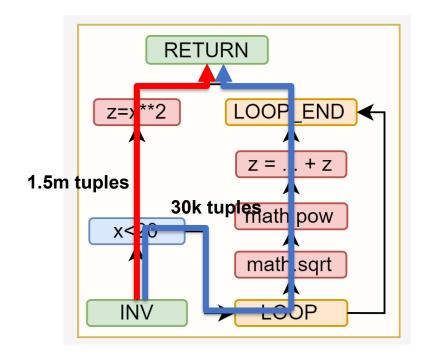
#3 Selectivities inside UDF

Different paths in UDF can have different runtimes

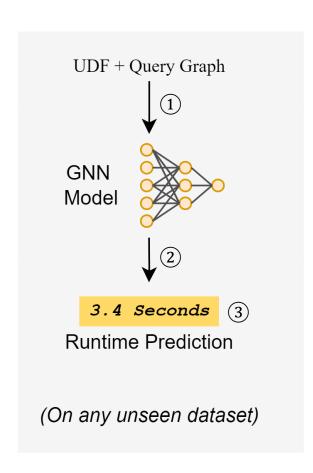
→ Selectivities of IF/ELSE conditions important!

Solution:

- Translate selectivity estimation problem into cardinality estimation problem
- Utilize cardinality estimator of DBMS

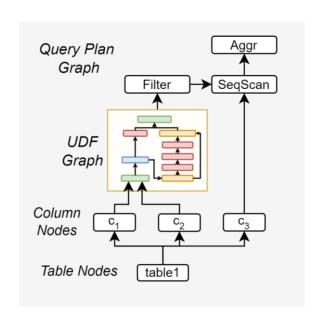


Run GNN Model



High level:

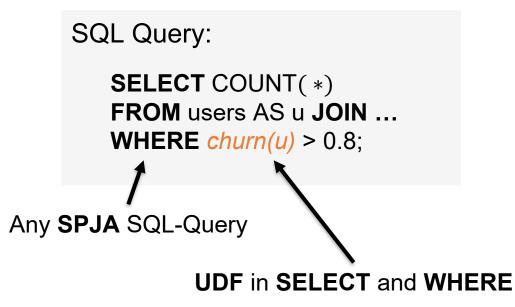
- Feed unified graph structure to Graph Neural Network
 - Graph-MLP (on Heterograph)
 - Topological Message Passing
 - Readout at Root Node
- 2. Return a **unified embedding** of UDF & Query Plan
- 3. Predict Runtime with **Regression Model**

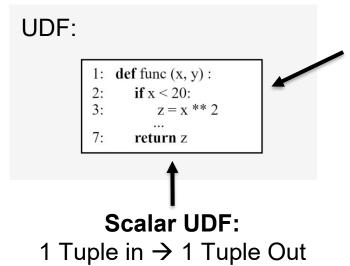


Synthetic Benchmark Generation

Workload Generator: synthetically generate UDFs & SQL queries

- Mimicking real-world UDFs based on Gupta et al.
- On 20 different databases





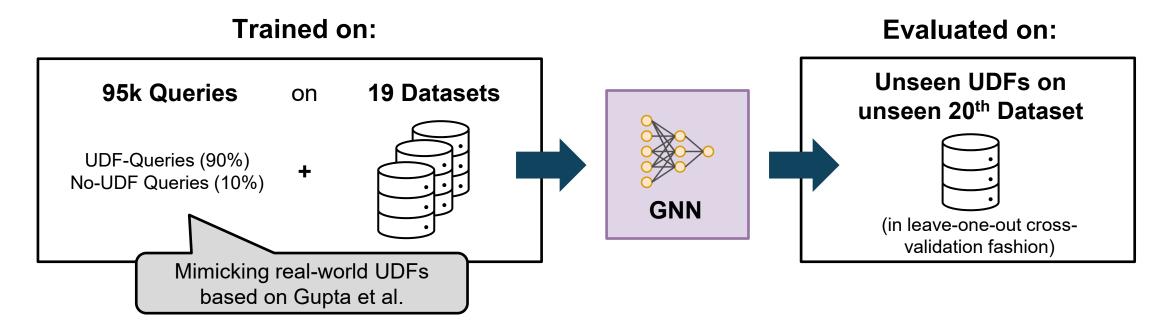
Python UDF with:

- Loops
- Branches
- Arithmetic/String Ops
- Library Calls

VLDB'21

UDF-Benchmark & Code available on Github: https://github.com/DataManagementLab/Graceful

Model Training



VLDB'21

Evaluation of the model in a zero-shot fashion (unseen database, query & UDF)

Understand Surabhi Gupta Microse

Microse

Karam@microsoft.com

Karam@microsoft.com

Such extensions offer several benefits when used in conjunction

Such extensions offer several benefits when used in conjunction

Such extensions offer several benefits when used in conjunction

Such extensions offer several benefits when used in conjunction

Such extensions offer several benefits when used in conjunction

Such extensions offer several benefits when used in conjunction

Such extensions offer several benefits when used in conjunction

Such extensions offer several benefits when used in conjunction

Such extensions offer several benefits when used in conjunction

Such extensions offer several benefits when used in conjunction

Such extensions offer several benefits when used in conjunction

Such extensions offer several benefits when used in conjunction

Such extensions offer several benefits when used in conjunction

Such extensions offer several benefits when used in conjunction

Such extensions offer several benefits when used in conjunction

Such extensions offer several benefits when used in conjunction

Such extensions offer several benefits when used in conjunction

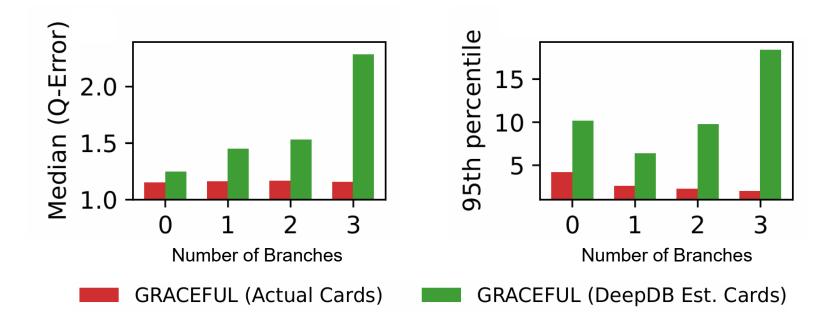
Such extensions offer several benefits when used in conjunction

Such extensions of the conjunction of

Evaluation – Median Q-Error

Evaluated on unseen Dataset, UDF & SQL Queries

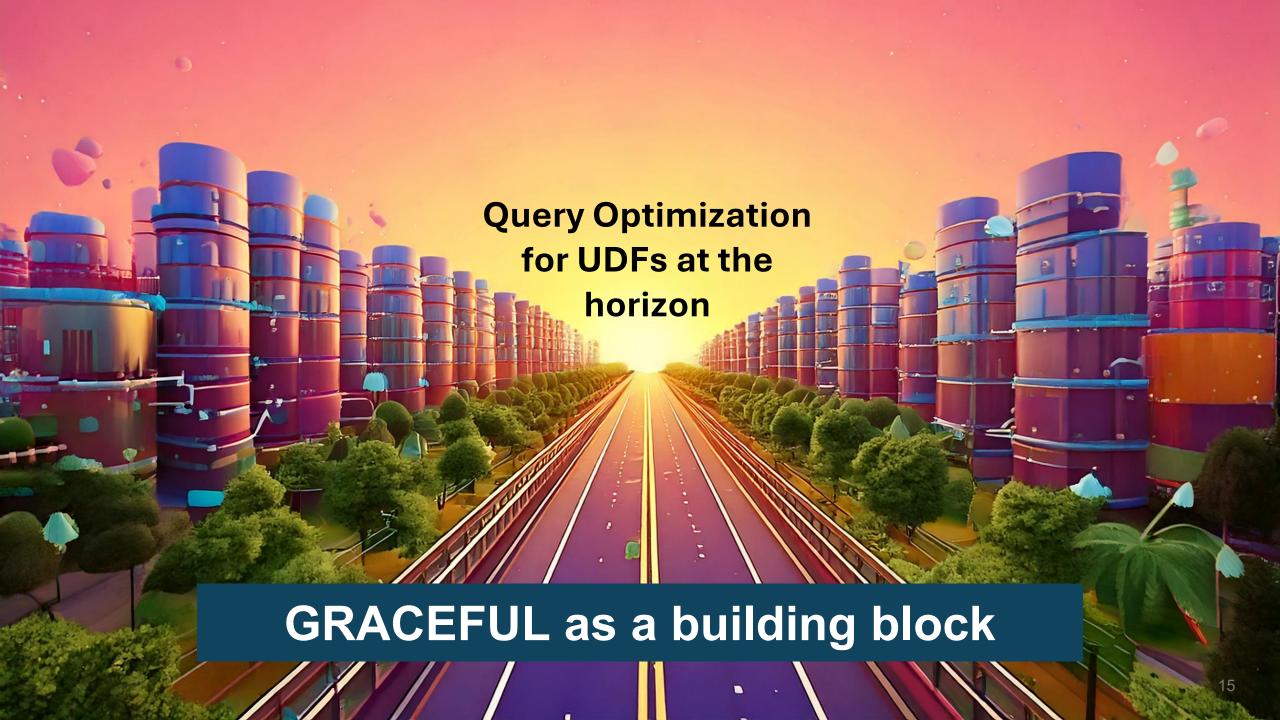
- Generalize across datasets (→ experiment in paper)
- Generalize across UDF complexity



Q-Error:

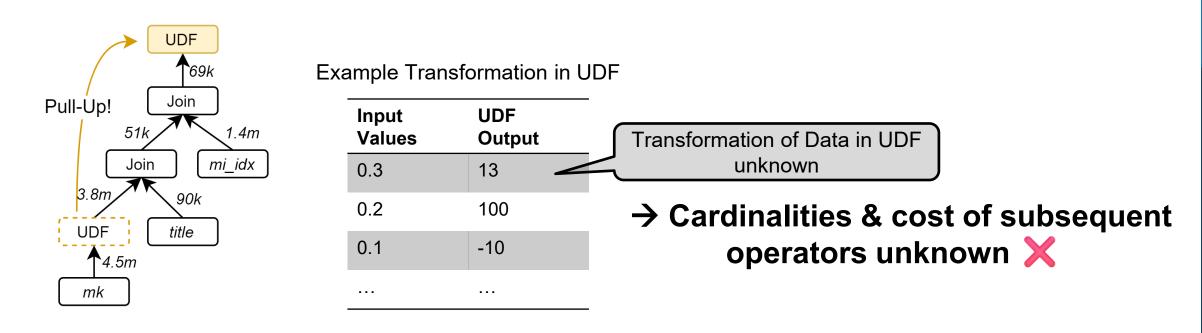
Relative Error Metric (Lower is better, 1 is perfect)

Generalizes across datasets & UDF complexity



Pull-Up / Push-Down Advisor

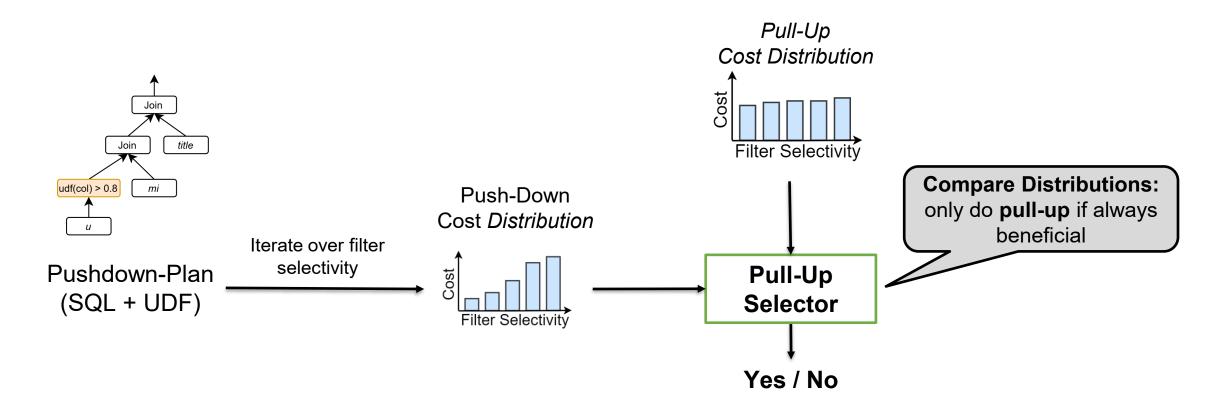
The placement of an UDF can make drastic differences (orders of magnitude speedups)



No idea of cost beyond UDF: we have to work with uncertainty

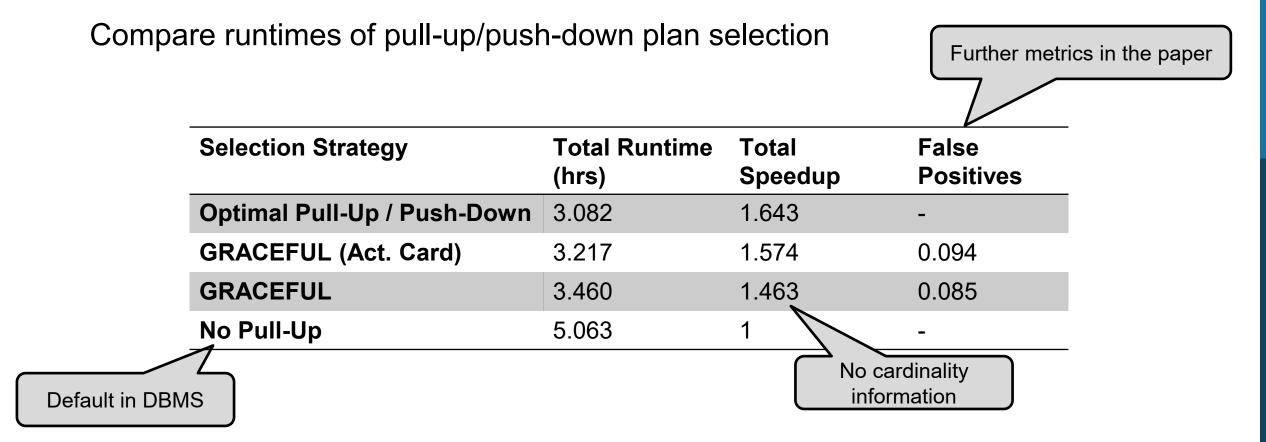
Pull-Up / Push-Down Advisor

Goal: Decide Pull-Up / Push-Down without cardinality information



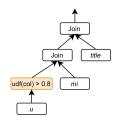
Regret optimization based on cost distribution

Pull-Up / Push-Down evaluation



Almost maximal speedups although very little information available

GRACEFUL



1: **def** func (x, y):

2: **if** x < 20:

3: z = x ** 2

7: return z

Query Plan

GRACEFUL

Learned Cost-Model

1.4s

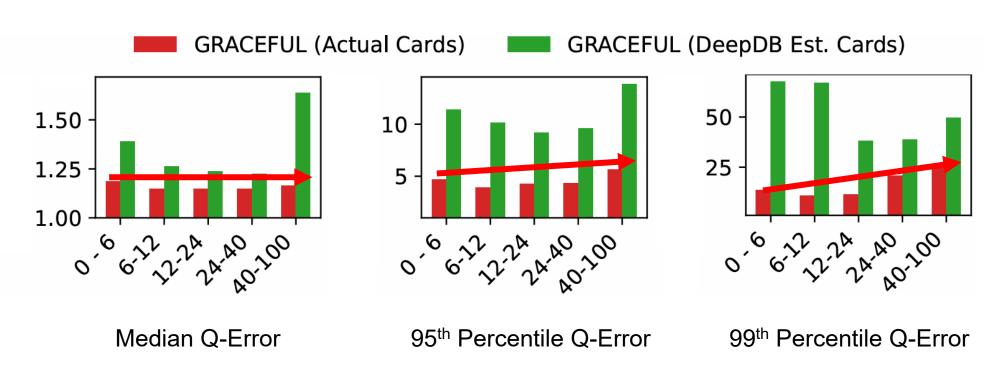
Contributions:

- GNN-based Cost-Estimator For UDFs*
- 2. Transferable Representation for UDFs
- 3. Almost maximal End-to-End benefits for Pull-Up / Push-Down Optimization
- 4. Publishing UDF
 Benchmark and SourceCode

^{*} that can generalize across UDFs, SQL workloads and datasets

Evaluation – Error with UDF Complexity

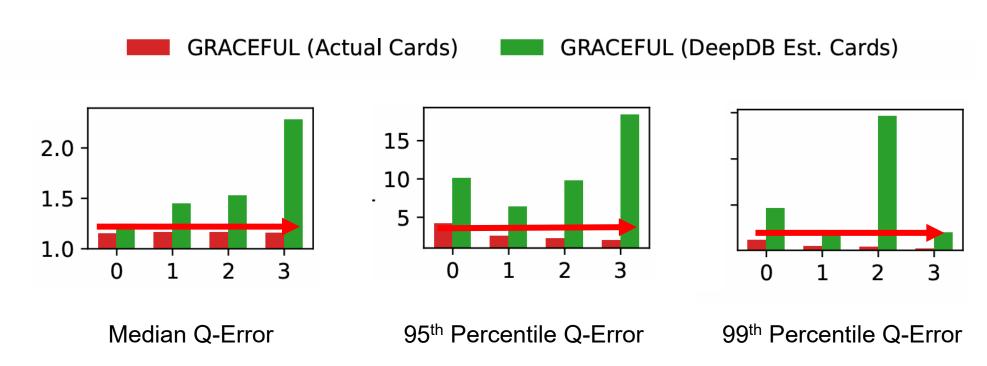
Graph Size (Number of COMPUTATION nodes)



Scales with number of computations in UDF

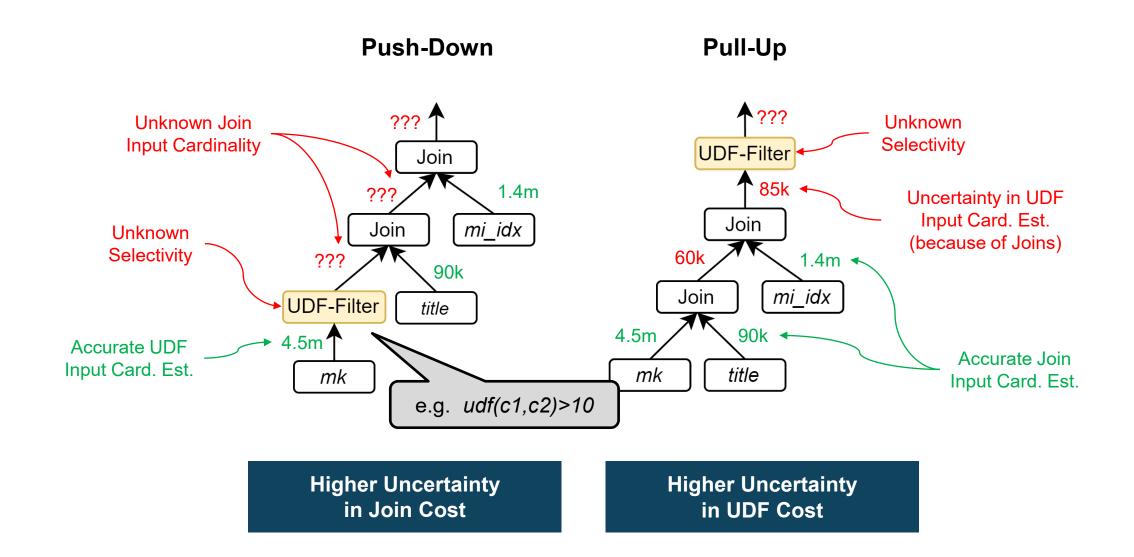
Evaluation – Error with UDF Comlexity

Number of Branches



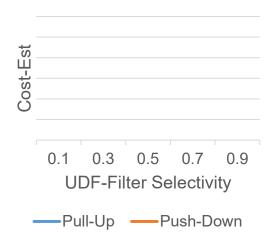
Scales with number of Branches

Uncertainties in Push-Down vs. Pull-Up



Comparing Cost Distributions

4 Strategies:



Never Pull

(Default in DBMS)

Push-Down

Conservative

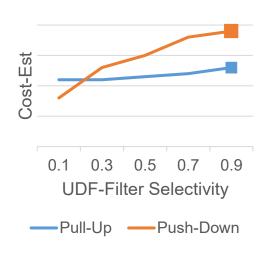
Only Pull-Up if always beneficial

Push-Down

Area-Under-Curve

Select lower AuC

Pull-Up



Upper-Bound-Cardinality

Decide using Cost from UDF-Filter Selectivity = 1

Pull-Up

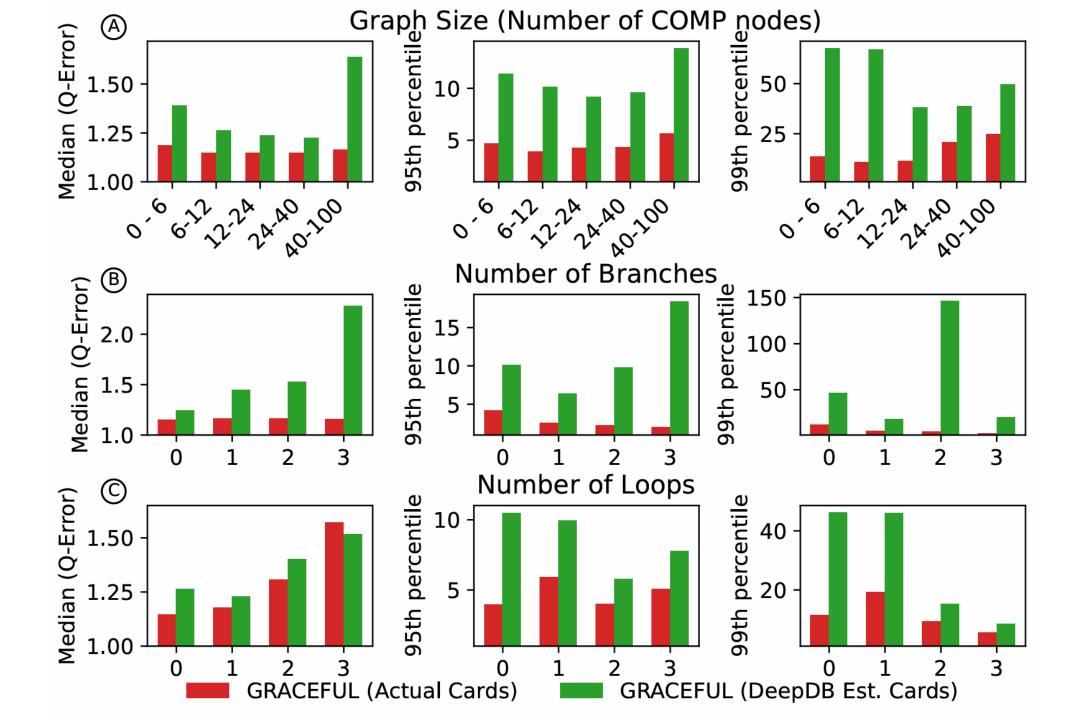
Evaluation

Further metrics in the paper

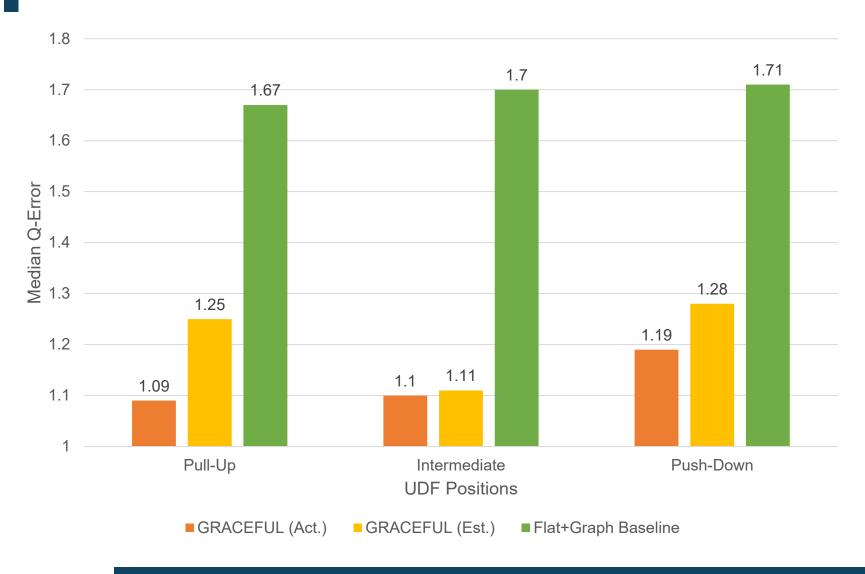
Selection Strategy	Card. Est. Method	Total Runtime (hrs)	Total Speedup	Median Speedup		
Optimal	-	3.082	1.643	1.375		
GRACEFUL (Cost)	Actual	3.217	1.574	1.370		
GRACEFUL (Conservative)	DeepDB	3.460	1.463	1.331		
GRACEFUL (AuC)	DeepDB	3.536	1.432	1.329		
GRACEFUL (UBC)	DeepDB	3.595	1.408	1.316		
No Pull-Up	-	5.063	1	1		

1.57 - 1.40x Speedups (>1.5hrs)

Overhead of our Optimizer: 3-3.5% of workload runtime (unoptimized system)



Evaluation – Median Q-Error

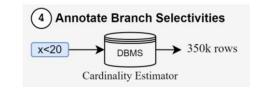


Q-Error:

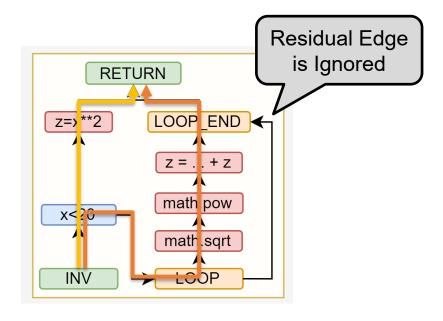
Relative Error Metric (Lower is better, 1 is perfect)

Low Q-Error independent of positioning of the UDF

Annotate Branch Selectivities



```
SELECT COUNT(*) FROM title as t
WHERE func(t.year, t.id) > 5
AND t.country = "GER";
```



Idea:

Leverage Database Statistics to estimate Branch Selectivities

Simple but powerful approach:

- 1. Extract all execution paths from UDF
- 2. Rewrite all conditions to SQL Query
- 3. Ask the DBMS Cardinality Estimator
- 4. Annotate Selectivities to nodes
- Path 1: t.country = "GER" AND t.year < 20 → 1.5m tuples
- Path 2: t.country = "GER" AND t.year ≥ 20 → 30k tuples

Training Data & Benchmark

To train & benchmark the model, we synthetically generated a benchmark (based on findings from Gupta et al.):

Number of Queries: 93.8k

- 72k with UDFs in filters / 21k with UDFs in projection

Number of Databases: 20

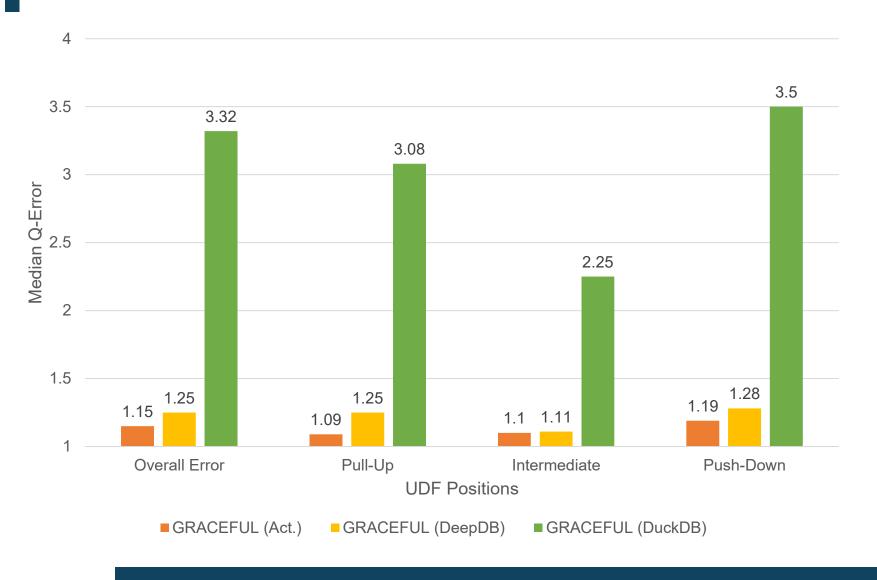
Query Complexity: 1-5 Joins, 0-21 Filters

UDF Complexity:

- Num branches: 0-3
- Num Loops: 0-3
- Num Arithmetic / String Ops: 10-150
- Supported Libraries: Math, Numpy

VLDB'21

Evaluation – Median Q-Error



Q-Error:

Relative Error Metric (Lower is better, 1 is perfect)

Card-Est Q-Errors:

	Med.	95 th
Act	-	-
DeepDB	1.47	247.08
DuckDB	6.29	528.43

Low Q-Error independent of positioning of the UDF

Evaluation

Model	Card. Est.	0	verall Er	ror	Pull-Up		Intermediate Position		Push-Down			Card. Est. Error			
	Method	Med.	95th	99th	Med.	95th	99th	Med.	95th	99th	Med.	95th	99th	Med.	95th
GRACEFUL	Actual	1.15	3.99	11.66	1.09	1.48	2.00	1.10	1.62	2.87	1.19	5.08	18.94	-	-
Flat+Graph	Actual	1.71	7.88	33.14	1.67	6.97	29.08	1.70	7.16	28.85	1.71	7.94	33.35	-	-
Graph+Graph	Actual	2.61	215.64	792.05	2.17	74.54	255.38	2.65	218.21	526.93	2.72	229.41	849.81	-	-
GRACEFUL	DeepDB [3]	1.25	10.08	45.17	1.25	10.49	460.99	1.11	1.76	2.77	1.28	11.19	44.15	1.47	247.08
GRACEFUL	WanderJoin [4]	1.26	7.89	88.46	1.75	14.07	31.52	1.13	1.71	2.60	1.25	7.23	84.87	1.21	309.38
GRACEFUL	DuckDB	3.32	30.14	84.70	3.08	40.42	132.48	2.25	24.89	177.52	3.50	28.76	80.30	6.29	528.43

