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Solution: Use UDFs to Execute 
Python code in the DBMS

SELECT * FROM users as u WHERE churn(u)>0.8;

Imagine you are a data-scientist…

… and want to retrieve all customers with a churn risk larger than 80%.
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Setup:

• the data is in a database

• your churn metric is written 
in Python



SELECT COUNT( ∗)
FROM users AS u JOIN …

WHERE churn(u) > 0.8;

UDF during QO

Query 

Optimizer

Query with UDF
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Join Ordering

Filter Pushdown

PhysOp Sel.

Optimized Query 

Plan

Many things go wrong during QO for UDFs

Expectation:

Unfortunately, this is not the reality!



SELECT COUNT( ∗) FROM users AS u JOIN … WHERE churn(u) > 0.8;

Example: Filter Push-Down

Query with UDF:

4A Cost Estimator for UDFs is needed

Filter Push-Down

21.86 s 0.48 s

Filter Pull-Up

45x Speedup

Filter Push-Down is 

NOT always 

beneficial!

How to decide when to apply pull-up?



Cost Estimation for UDFs is a hard problem

1. Undecidable problem in general: c.f. halting 
problem

2. Every UDF is different: complexity / length / 
operators

3. Different runtimes for tuples: if/else conditions

4. No information on Cardinalities inside and 
above UDF: output of the UDF and branching is 
unknown
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Cost Estimation for UDFs is challenging



GRAph-based Cost Estimator For User defined Logic

A Learned Cost-Estimator For UDFs
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GRACEFUL



Key Ideas
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1. Representation as a Graph

2. Transferable Features

3. Selectivity Estimation inside UDF

4. Representing UDF & Query Plan 

together



#1 Transferable Representation of UDF as Graph

Split UDF into fine-granular operations 
(Instead of representing as a black-box) 

→ representation as a graph 
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1. Enables better understanding of 
the inner workings of the UDF

2. Allows Generalization to unseen 
code

Naïve representation as CFG is not enough:

1. Collapsing of nodes (compact representation)

2. Additional edges (~residual connections)

e.g. LOOP→ END_LOOP



#2 Transferable Featurization
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How many rows 

are processed?

How many input columns? 

Data Types?

Operator?

Loop type (while/for)?

Data type of returned value?

Library call?

Inside of loop?

Featurize abstract signature of UDF

(in contrast to featurizing code – var 

names could change, …)

Allows generalization to unseen UDFs

Features:

1. Information related to 

computational complexity

2. On how many rows executed



#3 Selectivities inside UDF

Different paths in UDF can have different 
runtimes

→ Selectivities of IF/ELSE conditions 
important!
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1.5m tuples

30k tuples

Solution: 

• Translate selectivity estimation problem 
into cardinality estimation problem 

• Utilize cardinality estimator of DBMS



Run GNN Model

High level:

11

1. Feed unified graph structure to 
Graph Neural Network
− Graph-MLP (on Heterograph)
− Topological Message Passing
− Readout at Root Node

2. Return a unified embedding of 
UDF & Query Plan

3. Predict Runtime with Regression 
Model

①

②

③



Synthetic Benchmark Generation

Any SPJA SQL-Query

Python UDF with:

• Loops

• Branches

• Arithmetic/String Ops

• Library Calls

Scalar UDF:

1 Tuple in → 1 Tuple Out
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SELECT COUNT( ∗)
FROM users AS u JOIN …

WHERE churn(u) > 0.8;

SQL Query: UDF:

Workload Generator: synthetically generate UDFs & SQL queries

• Mimicking real-world UDFs based on Gupta et al.

• On 20 different databases

UDF-Benchmark & Code available on Github:
https://github.com/DataManagementLab/Graceful

UDF in SELECT and WHERE

https://github.com/DataManagementLab/Graceful


Model Training
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19 Datasets

UDF-Queries (90%)

No-UDF Queries (10%) +

GNN

95k Queries Unseen UDFs on 

unseen 20th Dataset

Trained on:

on

Evaluated on:

(in leave-one-out cross-

validation fashion)

Mimicking real-world UDFs 

based on Gupta et al.

UDF-Benchmark & Code available on Github:
https://github.com/DataManagementLab/Graceful

Evaluation of the model in a zero-shot fashion

(unseen database, query & UDF)

https://github.com/DataManagementLab/Graceful


Evaluation – Median Q-Error

Q-Error:

Relative Error Metric 

(Lower is better, 1 is perfect)
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Evaluated on unseen Dataset, UDF & SQL Queries

• Generalize across datasets (→ experiment in paper)

• Generalize across UDF complexity

Number of Branches Number of Branches

Generalizes across datasets & UDF complexity



Query Optimization 
for UDFs at the 

horizon

GRACEFUL as a building block
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Pull-Up / Push-Down Advisor
The placement of an UDF can make drastic 

differences (orders of magnitude speedups)

16

No idea of cost beyond UDF:

we have to work with uncertainty

→ Cardinalities & cost of subsequent   

operators unknown 

Transformation of Data in UDF 

unknown

Input 

Values

UDF 

Output

0.3 13

0.2 100

0.1 -10

… …

Example Transformation in UDF



Pull-Up / Push-Down Advisor

Push-Down

Cost Distribution

Yes / No

Pushdown-Plan

(SQL + UDF)

Iterate over filter 

selectivity
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Pull-Up

Cost Distribution

Regret optimization based on cost distribution

Pull-Up

Selector

Compare Distributions:

only do pull-up if always 

beneficial

Goal: Decide Pull-Up / Push-Down without cardinality information



Pull-Up / Push-Down evaluation

Almost maximal speedups although very 

little information available

Overhead of our Optimizer: 3-3.5% of workload runtime (unoptimized system)
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Further metrics in the paper

Default in DBMS

Compare runtimes of pull-up/push-down plan selection

Selection Strategy Total Runtime 

(hrs)

Total 

Speedup

False 

Positives

No Pull-Up 5.063 1 -

Optimal Pull-Up / Push-Down 3.082 1.643 -

GRACEFUL (Act. Card) 3.217 1.574 0.094

GRACEFUL 3.460 1.463 0.085

No cardinality 

information



GRACEFUL

GRACEFUL

Learned Cost-Model

Query Plan UDF Code

1.4s

Contributions:

1. GNN-based Cost-

Estimator For UDFs*

2. Transferable 

Representation for UDFs

3. Almost maximal End-to-

End benefits for Pull-Up / 

Push-Down Optimization

4. Publishing UDF 

Benchmark and Source-

Code

* that can generalize across UDFs, SQL 

workloads and datasets
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Questions 20



Evaluation – Error with UDF Complexity

Median Q-Error 95th Percentile Q-Error 99th Percentile Q-Error

Graph Size (Number of COMPUTATION nodes)

Scales with number of computations in UDF 
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Evaluation – Error with UDF Comlexity

Median Q-Error 95th Percentile Q-Error 99th Percentile Q-Error

Number of Branches

Scales with number of Branches
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Uncertainties in Push-Down vs. Pull-Up

Push-Down Pull-Up

4.5m 4.5m 90k

90k

1.4m

1.4m

Accurate UDF 

Input Card. Est.
Accurate Join 

Input Card. Est.

Unknown 

Selectivity

e.g.  udf(c1,c2)>10

???

???

???Unknown Join 

Input Cardinality

Higher Uncertainty 

in Join Cost

Higher Uncertainty 

in UDF Cost

Unknown 

Selectivity

Uncertainty in UDF 

Input Card. Est. 

(because of Joins)

???

85k

60k
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Comparing Cost Distributions

Conservative
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UDF-Filter Selectivity

Pull-Up Push-Down

Only Pull-Up if 

always beneficial

0.1 0.3 0.5 0.7 0.9

C
o
s
t-

E
s
t

UDF-Filter Selectivity

Pull-Up Push-Down

Area-Under-Curve

Select lower AuC

Upper-Bound-

Cardinality
Decide using Cost from 

UDF−Filter Selectivity = 1

0.1 0.3 0.5 0.7 0.9

C
o
s
t-
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s
t

UDF-Filter Selectivity

Pull-Up Push-Down

Push-Down Pull-Up Pull-Up

4 Strategies:
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Never Pull

0.1 0.3 0.5 0.7 0.9

C
o

s
t-

E
s
t

UDF-Filter Selectivity

Pull-Up Push-Down

(Default in DBMS)

Push-Down



Evaluation

1.57 – 1.40x Speedups (>1.5hrs)

Overhead of our Optimizer: 3-3.5% of workload runtime (unoptimized system) 25

Further metrics in the paper
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Evaluation – Median Q-Error
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Low Q-Error independent of positioning of the UDF

Q-Error:

Relative Error Metric 

(Lower is better, 1 is perfect)
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Annotate Branch Selectivities

Idea: 
Leverage Database Statistics to estimate 
Branch Selectivities
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SELECT COUNT( ∗) FROM title as t 

WHERE func(t.year, t.id) > 5 

AND t.country = “GER”;

Residual Edge 

is Ignored

Path 1: t.country = “GER” AND t.year < 20

Path 2: t.country = “GER” AND t.year ≥ 20

Simple but powerful approach:
1. Extract all execution paths from UDF
2. Rewrite all conditions to SQL Query
3. Ask the DBMS Cardinality Estimator
4. Annotate Selectivities to nodes

→ 1.5m tuples

→ 30k tuples



Training Data & Benchmark

To train & benchmark the model, we synthetically generated a benchmark 
(based on findings from Gupta et al.):
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Number of Queries: 93.8k

− 72k with UDFs in filters / 21k with UDFs in projection

Number of Databases: 20

Query Complexity: 1-5 Joins, 0-21 Filters

UDF Complexity:

− Num branches: 0-3

− Num Loops: 0-3

− Num Arithmetic / String Ops: 10-150

− Supported Libraries: Math, Numpy



Evaluation – Median Q-Error
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GRACEFUL (Act.) GRACEFUL (DeepDB) GRACEFUL (DuckDB)

Med. 95th

Act - -

DeepDB 1.47 247.08

DuckDB 6.29 528.43

Card-Est Q-Errors:

Low Q-Error independent of positioning of the UDF

Q-Error:

Relative Error Metric 

(Lower is better, 1 is perfect)
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Evaluation
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