
GRACEFUL – A Learned Cost
Estimator For UDFs
Johannes Wehrstein *, Tiemo Bang †, Roman Heinrich *‡, Carsten Binnig *‡

* Technical University of Darmstadt, † Microsoft – Gray Systems Lab, ‡ DFKI

Solution: Use UDFs to Execute
Python code in the DBMS

SELECT * FROM users as u WHERE churn(u)>0.8;

Imagine you are a data-scientist…

… and want to retrieve all customers with a churn risk larger than 80%.

2

Setup:

• the data is in a database

• your churn metric is written
in Python

SELECT COUNT(∗)
FROM users AS u JOIN …

WHERE churn(u) > 0.8;

UDF during QO

Query

Optimizer

Query with UDF

3

Join Ordering

Filter Pushdown

PhysOp Sel.

Optimized Query

Plan

Many things go wrong during QO for UDFs

Expectation:

Unfortunately, this is not the reality!

SELECT COUNT(∗) FROM users AS u JOIN … WHERE churn(u) > 0.8;

Example: Filter Push-Down

Query with UDF:

4A Cost Estimator for UDFs is needed

Filter Push-Down

21.86 s 0.48 s

Filter Pull-Up

45x Speedup

Filter Push-Down is

NOT always

beneficial!

How to decide when to apply pull-up?

Cost Estimation for UDFs is a hard problem

1. Undecidable problem in general: c.f. halting
problem

2. Every UDF is different: complexity / length /
operators

3. Different runtimes for tuples: if/else conditions

4. No information on Cardinalities inside and
above UDF: output of the UDF and branching is
unknown

5

Cost Estimation for UDFs is challenging

GRAph-based Cost Estimator For User defined Logic

A Learned Cost-Estimator For UDFs

6

GRACEFUL

Key Ideas

7

1. Representation as a Graph

2. Transferable Features

3. Selectivity Estimation inside UDF

4. Representing UDF & Query Plan

together

#1 Transferable Representation of UDF as Graph

Split UDF into fine-granular operations
(Instead of representing as a black-box)

→ representation as a graph

8

1. Enables better understanding of
the inner workings of the UDF

2. Allows Generalization to unseen
code

Naïve representation as CFG is not enough:

1. Collapsing of nodes (compact representation)

2. Additional edges (~residual connections)

e.g. LOOP→ END_LOOP

#2 Transferable Featurization

9

How many rows

are processed?

How many input columns?

Data Types?

Operator?

Loop type (while/for)?

Data type of returned value?

Library call?

Inside of loop?

Featurize abstract signature of UDF

(in contrast to featurizing code – var

names could change, …)

Allows generalization to unseen UDFs

Features:

1. Information related to

computational complexity

2. On how many rows executed

#3 Selectivities inside UDF

Different paths in UDF can have different
runtimes

→ Selectivities of IF/ELSE conditions
important!

10

1.5m tuples

30k tuples

Solution:

• Translate selectivity estimation problem
into cardinality estimation problem

• Utilize cardinality estimator of DBMS

Run GNN Model

High level:

11

1. Feed unified graph structure to
Graph Neural Network
− Graph-MLP (on Heterograph)
− Topological Message Passing
− Readout at Root Node

2. Return a unified embedding of
UDF & Query Plan

3. Predict Runtime with Regression
Model

①

②

③

Synthetic Benchmark Generation

Any SPJA SQL-Query

Python UDF with:

• Loops

• Branches

• Arithmetic/String Ops

• Library Calls

Scalar UDF:

1 Tuple in → 1 Tuple Out

12

SELECT COUNT(∗)
FROM users AS u JOIN …

WHERE churn(u) > 0.8;

SQL Query: UDF:

Workload Generator: synthetically generate UDFs & SQL queries

• Mimicking real-world UDFs based on Gupta et al.

• On 20 different databases

UDF-Benchmark & Code available on Github:
https://github.com/DataManagementLab/Graceful

UDF in SELECT and WHERE

https://github.com/DataManagementLab/Graceful

Model Training

13

19 Datasets

UDF-Queries (90%)

No-UDF Queries (10%) +

GNN

95k Queries Unseen UDFs on

unseen 20th Dataset

Trained on:

on

Evaluated on:

(in leave-one-out cross-

validation fashion)

Mimicking real-world UDFs

based on Gupta et al.

UDF-Benchmark & Code available on Github:
https://github.com/DataManagementLab/Graceful

Evaluation of the model in a zero-shot fashion

(unseen database, query & UDF)

https://github.com/DataManagementLab/Graceful

Evaluation – Median Q-Error

Q-Error:

Relative Error Metric

(Lower is better, 1 is perfect)

14

Evaluated on unseen Dataset, UDF & SQL Queries

• Generalize across datasets (→ experiment in paper)

• Generalize across UDF complexity

Number of Branches Number of Branches

Generalizes across datasets & UDF complexity

Query Optimization
for UDFs at the

horizon

GRACEFUL as a building block
15

Pull-Up / Push-Down Advisor
The placement of an UDF can make drastic

differences (orders of magnitude speedups)

16

No idea of cost beyond UDF:

we have to work with uncertainty

→ Cardinalities & cost of subsequent

operators unknown

Transformation of Data in UDF

unknown

Input

Values

UDF

Output

0.3 13

0.2 100

0.1 -10

… …

Example Transformation in UDF

Pull-Up / Push-Down Advisor

Push-Down

Cost Distribution

Yes / No

Pushdown-Plan

(SQL + UDF)

Iterate over filter

selectivity

17

Pull-Up

Cost Distribution

Regret optimization based on cost distribution

Pull-Up

Selector

Compare Distributions:

only do pull-up if always

beneficial

Goal: Decide Pull-Up / Push-Down without cardinality information

Pull-Up / Push-Down evaluation

Almost maximal speedups although very

little information available

Overhead of our Optimizer: 3-3.5% of workload runtime (unoptimized system)
18

Further metrics in the paper

Default in DBMS

Compare runtimes of pull-up/push-down plan selection

Selection Strategy Total Runtime

(hrs)

Total

Speedup

False

Positives

No Pull-Up 5.063 1 -

Optimal Pull-Up / Push-Down 3.082 1.643 -

GRACEFUL (Act. Card) 3.217 1.574 0.094

GRACEFUL 3.460 1.463 0.085

No cardinality

information

GRACEFUL

GRACEFUL

Learned Cost-Model

Query Plan UDF Code

1.4s

Contributions:

1. GNN-based Cost-

Estimator For UDFs*

2. Transferable

Representation for UDFs

3. Almost maximal End-to-

End benefits for Pull-Up /

Push-Down Optimization

4. Publishing UDF

Benchmark and Source-

Code

* that can generalize across UDFs, SQL

workloads and datasets
19

Questions 20

Evaluation – Error with UDF Complexity

Median Q-Error 95th Percentile Q-Error 99th Percentile Q-Error

Graph Size (Number of COMPUTATION nodes)

Scales with number of computations in UDF
21

Evaluation – Error with UDF Comlexity

Median Q-Error 95th Percentile Q-Error 99th Percentile Q-Error

Number of Branches

Scales with number of Branches
22

Uncertainties in Push-Down vs. Pull-Up

Push-Down Pull-Up

4.5m 4.5m 90k

90k

1.4m

1.4m

Accurate UDF

Input Card. Est.
Accurate Join

Input Card. Est.

Unknown

Selectivity

e.g. udf(c1,c2)>10

???

???

???Unknown Join

Input Cardinality

Higher Uncertainty

in Join Cost

Higher Uncertainty

in UDF Cost

Unknown

Selectivity

Uncertainty in UDF

Input Card. Est.

(because of Joins)

???

85k

60k

23

Comparing Cost Distributions

Conservative

0.1 0.3 0.5 0.7 0.9

C
o
s
t-

E
s
t

UDF-Filter Selectivity

Pull-Up Push-Down

Only Pull-Up if

always beneficial

0.1 0.3 0.5 0.7 0.9

C
o
s
t-

E
s
t

UDF-Filter Selectivity

Pull-Up Push-Down

Area-Under-Curve

Select lower AuC

Upper-Bound-

Cardinality
Decide using Cost from

UDF−Filter Selectivity = 1

0.1 0.3 0.5 0.7 0.9

C
o
s
t-

E
s
t

UDF-Filter Selectivity

Pull-Up Push-Down

Push-Down Pull-Up Pull-Up

4 Strategies:

24

Never Pull

0.1 0.3 0.5 0.7 0.9

C
o

s
t-

E
s
t

UDF-Filter Selectivity

Pull-Up Push-Down

(Default in DBMS)

Push-Down

Evaluation

1.57 – 1.40x Speedups (>1.5hrs)

Overhead of our Optimizer: 3-3.5% of workload runtime (unoptimized system) 25

Further metrics in the paper

26

Evaluation – Median Q-Error

1.09 1.1

1.19

1.25

1.11

1.28

1.67
1.7 1.71

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Pull-Up Intermediate Push-Down

M
e
d

ia
n

 Q
-E

rr
o
r

UDF Positions

GRACEFUL (Act.) GRACEFUL (Est.) Flat+Graph Baseline

Low Q-Error independent of positioning of the UDF

Q-Error:

Relative Error Metric

(Lower is better, 1 is perfect)

27

Annotate Branch Selectivities

Idea:
Leverage Database Statistics to estimate
Branch Selectivities

28

SELECT COUNT(∗) FROM title as t

WHERE func(t.year, t.id) > 5

AND t.country = “GER”;

Residual Edge

is Ignored

Path 1: t.country = “GER” AND t.year < 20

Path 2: t.country = “GER” AND t.year ≥ 20

Simple but powerful approach:
1. Extract all execution paths from UDF
2. Rewrite all conditions to SQL Query
3. Ask the DBMS Cardinality Estimator
4. Annotate Selectivities to nodes

→ 1.5m tuples

→ 30k tuples

Training Data & Benchmark

To train & benchmark the model, we synthetically generated a benchmark
(based on findings from Gupta et al.):

29

Number of Queries: 93.8k

− 72k with UDFs in filters / 21k with UDFs in projection

Number of Databases: 20

Query Complexity: 1-5 Joins, 0-21 Filters

UDF Complexity:

− Num branches: 0-3

− Num Loops: 0-3

− Num Arithmetic / String Ops: 10-150

− Supported Libraries: Math, Numpy

Evaluation – Median Q-Error

1.15
1.09 1.1

1.19
1.25 1.25

1.11

1.28

3.32

3.08

2.25

3.5

1

1.5

2

2.5

3

3.5

4

Overall Error Pull-Up Intermediate Push-Down

M
e
d

ia
n

 Q
-E

rr
o
r

UDF Positions

GRACEFUL (Act.) GRACEFUL (DeepDB) GRACEFUL (DuckDB)

Med. 95th

Act - -

DeepDB 1.47 247.08

DuckDB 6.29 528.43

Card-Est Q-Errors:

Low Q-Error independent of positioning of the UDF

Q-Error:

Relative Error Metric

(Lower is better, 1 is perfect)

30

Evaluation

31

32

	Slide 1: GRACEFUL – A Learned Cost Estimator For UDFs
	Slide 2: Imagine you are a data-scientist…
	Slide 3: UDF during QO
	Slide 4: Example: Filter Push-Down
	Slide 5: Cost Estimation for UDFs is a hard problem
	Slide 6: GRACEFUL
	Slide 7: Key Ideas
	Slide 8: #1 Transferable Representation of UDF as Graph
	Slide 9: #2 Transferable Featurization
	Slide 10: #3 Selectivities inside UDF
	Slide 11: Run GNN Model
	Slide 12: Synthetic Benchmark Generation
	Slide 13: Model Training
	Slide 14: Evaluation – Median Q-Error
	Slide 15
	Slide 16: Pull-Up / Push-Down Advisor
	Slide 17: Pull-Up / Push-Down Advisor
	Slide 18: Pull-Up / Push-Down evaluation
	Slide 19: GRACEFUL
	Slide 20
	Slide 21: Evaluation – Error with UDF Complexity
	Slide 22: Evaluation – Error with UDF Comlexity
	Slide 23: Uncertainties in Push-Down vs. Pull-Up
	Slide 24: Comparing Cost Distributions
	Slide 25: Evaluation
	Slide 26
	Slide 27: Evaluation – Median Q-Error
	Slide 28: Annotate Branch Selectivities
	Slide 29: Training Data & Benchmark
	Slide 30: Evaluation – Median Q-Error
	Slide 31: Evaluation
	Slide 32

